سایت کلاس درس ارائه میکند :
تئوری بازیها ( آموزش مالتی مدیا )
15 بهمن 1393 ساعت 21:41
در ابتدا ویدیو های آموزشی را ملاحظه فرمایید و در انتها به شناسایی تئوری بازیها به تفضیل میپردازیم :
بازی های ساده و تعادل نش
۰۱ - مفهوم بازی و بازی معمای زندانی
۰۲ - عناصر تشکیلدهنده یک بازی
۰۳ - مفهوم تعادل نش
۰۴ - تعریف رسمی تعادل نش
۰۵ - مثال از مفهوم تعادل نش: بازی مشارکت در پروژه عمومی
۰۶ - عملهای غالب و مغلوب
۰۷ - تصمیمگیری جمعی برای کالای عمومی
۰۸ - تابع بهترین پاسخ
۰۹ - رابطه بین تابع بهترین پاسخ و تعادل نش
۱۰ - مدل یک پروژه دو نفرهی همافزا
۱۱ - مدل رقابت چندجانبهی کورنو
۱۲ - مدل رقابت چندجانبهی کورنو ۲
بازیهای پویا
۰۱ - بازیهای شکل گسترده یا بازیهای پویا
۰۲ - مفهوم استراتژی در بازیهای شکل گسترده
۰۳ - تعادل نش در بازیهای شکل گسترده
۰۴ - مثال از تعادل نش بازیهای شکل گسترده
۰۵ - تعادل نش زیربازی کامل
۰۶ - استنتاج معکوس
۰۷ - رقابت چندجانبه استاکلبرگ (مدل پیشرو-دنبالهرو)
تعادل نش ترکیبی
۰۱ - تعریف یک استراتژی ترکیبی
۰۲ - مطلوبیت انتظاری
۰۳ - یک مثال از تعادل نش ترکیبی
۰۴ - تعریف رسمی تعادل نش ترکیبی
۰۵ - رابطه تعادل نش ترکیبی و تابع بهترین پاسخ
۰۶ - مثال از تعادل نش ترکیبی (بازی باخ یا استراوینکسی)
۰۷ - تحلیل جنایت میدان کاج ۱: نظریه بازی ها یا روانشناسی اجتماعی؟
۰۸ - تحلیل جنایت میدان کاج ۲: تعادل نش ترکیبی
۰۹ - تحلیل جنایت میدان کاج ۳: روانشناسی اجتماعی و نظریه بازیها
مباحث منتخب در نظریه بازیها
۰۱ - یک ضعف سیستمهای انتخاب عمومی
تاریخچه تئوری بازیها ( برگرفته از ویکی پدیا )
درسال ۱۹۲۱ یک ریاضیدان فرانسوی به نام امیل برل (Emile Borel) برای نخستین بار به مطالعهٔ تعدادی از بازیهای رایج در قمارخانهها پرداخت و تعدادی مقاله در مورد آنها نوشت. او در این مقالهها بر قابل پیشبینی بودن نتایج این نوع بازیها به طریق منطقی، تأکید کرده بود.
اگرچه برل نخستین کسی بود که به طور جدی به موضوع بازیها پرداخت، به دلیل آن که تلاش پیگیری برای گسترش و توسعهٔ ایدههای خود انجام نداد، بسیاری از مورخین ایجاد نظریهٔ بازی را نه به او، بلکه به جان فون نویمان (John Von Neumann) ریاضیدان مجارستانی نسبت دادهاند.
آنچه نیومن را به توسعهٔ نظریهٔ بازی ترغیب کرد، توجه ویژهٔ او به یک بازی با ورق بود. او دریافته بود که نتیجهٔ این بازی صرفاً با تئوری احتمالات تعیین نمیشود. او شیوهٔ بلوفزدن در این بازی را فرمولبندی کرد. بلوفزدن در بازی به معنای راهکار فریبدادن سایر بازیکنان و پنهانکردن اطلاعات از آنها میباشد.
در سال ۱۹۲۸ او به همراه اسکار مونگسترن(Oskar Mongenstern) که اقتصاددانی اتریشی بود، کتاب تئوری بازیها و رفتار اقتصادی را به رشتهٔ تحریر در آوردند. اگر چه این کتاب صرفاً برای اقتصاددانان نوشته شده بود، کاربردهای آن در روانشناسی، جامعهشناسی، سیاست، جنگ، بازیهای تفریحی و بسیاری زمینههای دیگر به زودی آشکار شد.
نویمن بر اساس راهبردهای موجود در یک بازی ویژه شبیه شطرنج توانست کنشهای میان دو کشور ایالات متحده و اتحاد جماهیر شوروی را در خلال جنگ سرد، با در نظر گرفتن آنها به عنوان دو بازیکن در یک بازی مجموع صفر مدلسازی کند.
از آن پس پیشرفت این دانش با سرعت بیشتری در زمینههای مختلف پی گرفته شد و از جمله در دههٔ ۱۹۷۰ به طور چشمگیری در زیستشناسی برای توضیح پدیدههای زیستی به کار گرفته شد.
در سال ۱۹۹۴ جان نش(John Nash) به همراه دو نفر دیگر به خاطر مطالعات خلاقانه خود در زمینهٔ تئوری بازی برندهٔ جایزه نوبل اقتصاد شدند. در سالهای بعد نیز برندگان جایزهٔ نوبل اقتصاد عموماً از میان نظریهپردازان بازی انتخاب شدند.
کاربردها[ویرایش]
نظریه بازی در مطالعهٔ طیف گستردهای از موضوعات کاربرد دارد. از جمله نحوه تعامل تصمیم گیرندگان در محیط رقابتی به شکلی که نتایج تصمیم هر عامل موثر بر نتایج کسب شده سایر عوامل میباشد. در واقع ساختار اصلی نظریه بازیها در بیشتر تحلیلها شامل ماتریسی چند بعدی است که در هر بعد مجموعهای از گزینهها قرار گرفتهاند که درآرایههای این ماتریس نتایج کسب شده برای عوامل در ازاء ترکیبهای مختلف از گزینههای مورد انتظار است. یکی از اصلی ترین شرایط بکارگیری این نظریه در تحلیل محیطهای رقابتی، وفاداری عوامل متعامل در رعایت منطق بازی است. در صورتی که این پیش شرط به هر دلیل رعایت نگردد، یا بایستی در انتظار نوزایی ساختار جدید دیگری از منطق تحلیلی بازیگران متعامل بود و یا به دلیل عدم پیش بینی نتایج بازی و یا گزینههای مورد انتظار سیستم تصمیم گیرنده به سراغ سایر روشهای تحلیل در یک چنین محیطهای تصمیم گیری رفت. هر چه قدر توان پیش بینی گزینهها و نتایج حاصل از انتخاب آنها بیشتر باشد، عدم قطعیت در این تکنیک کاهش مییابد. نوعی از بازی نیز وجود دارد که به دلیل اینکه امکان برآورد احتمال وقوع نتایج در آنها وجود ندارد به بازیهای ابهام شهرت دارند.
این نظریه در ابتدا برای درک مجموعهٔ بزرگی از رفتارهای اقتصادی به عنوان مثال نوسانات شاخص سهام در بورس اوراق بهادار و افت و خیز بهای کالاها در بازار مصرفکنندگان ایجاد شد.
تحلیل پدیدههای گوناگون اقتصادی و تجاری نظیر پیروزی در یک مزایده، معامله، داد و ستد، شرکت در یک مناقصه، از دیگر مواردی است که نظریه بازی در آن نقش ایفا میکند.
پژوهشها در این زمینه اغلب بر مجموعهای از راهبردهای شناخته شده به عنوان تعادل در بازیها استوار است. این راهبردها اصولاً از قواعد عقلانی به نتیجه میرسند. مشهورترین تعادلها، تعادل نش است. براساس نظریهٔ تعادل نش، اگر فرض کنیم در هر بازی با استراتژی مختلط، بازیکنان به طریق منطقی و معقول راهبردهای خود را انتخاب کنند و به دنبال حد اکثر سود در بازی هستند، دست کم یک راهبرد برای به دست آوردن بهترین نتیجه برای هر بازیکن قابل انتخاب است و چنانچه بازیکن راهکار دیگری به غیر از آن را انتخاب کند، نتیجهٔ بهتری به دست نخواهد آورد.
کاربرد نظریه بازیها در شاخههای مختلف علوم مرتبط با اجتماع از جمله سیاست (همانند تحلیلهای بروس بوئنو د مسکیتا)، جامعهشناسی، و حتی روانشناسی در حال گسترش است.
در زیستشناسی هم برای درک پدیدههای متعدد، از جمله برای توضیح تکامل و ثبات و نیز برای تحلیل رفتار تنازع بقا و نزاع برای تصاحب قلمرو از نظریه بازی استفاده میشود.
امروزه این نظریه کاربرد فزایندهای در منطق و دانش کامپیوتر دارد. دانشمندان این رشتهها از برخی بازیها برای مدلسازی محاسبات و نیز به عنوان پایهای نظری برای سیستمهای چندعاملی استفاده میکنند.
هم چنین این نظریه نقش مهمی در مدلسازی الگوریتمهای بر خط (Online Algorithms) دارد.
کاربردهای این نظریه تا آن جا پیش رفته است که در توصیف و تحلیل بسیاری از رفتارها در فلسفه و اخلاق ظاهر میشود.
تعریفهای اصلی[ویرایش]
بازی[ویرایش]
هرگاه سود یک موجودیت تنها در گرو رفتار خود او نبوده و متاثر از رفتار یک یا چند موجودیت دیگر باشد، و تصمیمات دیگر تاثیر مثبت و منفی بر روی سود او داشته باشند، یک بازی میان دو یا چند موجودیت یاد شده شکل گرفته است.(عبدلی قهرمان «نظریه بازیها و کاربردهای آن»)
رفتار بخردانه یا عقلایی (به انگلیسی: Rational Behavior)[ویرایش]
اصل اصیل نظریه بازیها بر بخردانه بودن رفتار بازکنان است. بخردانه بودن به این معنا است که هر بازیکن تنها در پی بیشینه کردن سود خود بوده و هر بازیکن میداند که چگونه میتواند سود خود را بشینه کند. بنابر این حدس زدن رفتار ایشان که بر اساس نمودار هزینه-فایده است آسان خواهد بود. مانند بازی شطرنج که میتوان حدس زد که حریف بازی بلد و با تجربه چه تصمیمی خواهد گرفت.
استراتژی[ویرایش]
استراتژی مهارت خوب بازی کردن و یا محاسبهٔ بکارگیری مهارت به بهترین وجه است.
تفکر استراتژیک[ویرایش]
فکر کردن به بازی حریف و تصمیمات و او و واکنشهای احتمالی را تفکر استراتژیک میگویند.
ساختار بازی[ویرایش]
هر بازی از سه عنصر اساسی تشکلی شده است: بازیکنها، اعمال، ترجیحات
بازیکنها[ویرایش]
بازیکنها در اصل همان تصمیم گیرندگان) بازی میباشند. بازیکن میتواند شخص، شرکت، دولت و ... باشد.
عمل (به انگلیسی: Actions)[ویرایش]
مجموعهای است از تصمیمات و اقداماتی است که هر بازیکن میتواند انجام دهد.
نمایه عمل(به انگلیسی: Action Profile)[ویرایش]
هر زیر مجموعهای از مجموعهٔ اعمال ممکن را یک نمایه عمل گوییم.
تابع سوددهی(به انگلیسی: payoff function) =[ویرایش]
اولویتهای یک بازیکن در اصل مشوقهای بازیکن برای گرفتن یا نگرفتن تصمیمی میباشد به عبارت دیگر بیان گر نتیجه و امتیاز بازیکن در صورت گرفتن تصمیم متناظر با آن میباشد.
انواع بازی[ویرایش]
نظریه بازی علیالاصول میتواند روند و نتیجهٔ هر نوع بازی از دوز گرفته تا بازی در بازار بورس سهام را توصیف و پیشبینی کند.
تعدادی از ویژگیهایی که بازیهای مختلف بر اساس آنها طبقهبندی میشوند، در زیر آمدهاست. اگر کمی دقت کنید از این پس میتوانید خودتان بازیهای مختلف و یا حتا پدیدهها ورویدادهای مختلفی را که در پیرامون خود با آنها مواجه میشوید به همین ترتیب تقسیمبندی کنید.
متقارن - نامتقارن (Symmetric - Asymmetric)[ویرایش]
بازی متقارن بازیای است که نتیجه و سود حاصل از یک راه برد تنها به این وابسته است که چه راهبردهای دیگری در بازی پیش گرفته شود؛ و از این که کدام بازیکن این راهبرد را در پیش گرفتهاست مستقل است. به عبارت دیگر اگر مشخصات بازیکنان بدون تغییر در سود حاصل از به کارگیری راهبردها بتواند تغییر کند، این بازی متقارن است. بسیاری از بازیهایی که در یک جدول ۲*۲ قابل نمایش هستند، اصولاً متقارناند.
بازی ترسوها و معمای زندانی (در ادامه توضیح داده خواهد شد.) نمونههایی از بازی متقارن هستند.
بازیهای نامتقارن اغلب بازیهایی هستند که مجموعهٔ راهبردهای یکسانی برای بازیکنان در بازی وجود ندارد. البته ممکن است راهبردهای یکسانی برای بازیکنان موجود باشد ولی آن بازی نامتقارن باشد.
مجموع صفر - مجموع غیر صفر(Zero Sum - Nonzero Sum)[ویرایش]
بازیهای مجموع صفر بازیهایی هستند که ارزش بازی در طی بازی ثابت میماند و کاهش یا افزایش پیدا نمیکند. در این بازیها، سود یک بازیکن با زیان بازیکن دیگر همراه است. به عبارت سادهتر یک بازی مجموع صفر یک بازی برد-باخت مانند دوز است و به ازای هر برنده همواره یک بازنده وجود دارد.
اما در بازیهای مجموع غیر صفر راهبردهایی موجود است که برای همهٔ بازیکنان سودمند است.
تصادفی - غیر تصادفی (Random - Nonrandom)[ویرایش]
بازیهای تصادفی شامل عناصر تصادفی مانند ریختن تاس یا توزیع ورق هستند و بازیهای غیر تصادفی بازیهایی هستند که دارای راهبردهایی صرفاً منطقی هستند. در این مورد میتوان شطرنج و دوز را مثال زد.
با آگاهی کامل – بدون آگاهی کامل (Perfect Knowledge – Non-Perfect Knowledge)[ویرایش]
بازیهای با آگاهی کامل، بازیهایی هستند که تمام بازیکنان میتوانند در هر لحظه تمام ترکیب بازی را در مقابل خود مشاهده کنند، مانند شطرنج. از سوی دیگر در بازیهای بدون آگاهی کامل ظاهر و ترکیب کل بازی برای بازیکنان پوشیدهاست، مانند بازیهایی که با ورق انجام میشود.
مفاهیم نظریه بازیها[ویرایش]
تعادل[ویرایش]
در یک سیستم اقتصادی تعادل به نقطهای گفته میشود که در آن هیچ یک از طرفین معامله تمایل به تغییر نداشته باشند و با هر گونه تغییر شرایط بدتر شده و سیستم مجدداً به نقطهٔ تعادل باز میگردد
تعادل نش[ویرایش]
یک نمایه عمل بازی میباشد که با فرض ثابت بودن بازی سایر بازیکنان، هر بازیکن با تغییر بازی خود شرایطش بدتر شود. یا به عبارت دیگر، نمایه عملی است که با فرض ثابت بودن بازی سایر بازیکنان هیچ بازیکنی انگیزهٔ تغییر بازی خود را نداشته باشد.
تعادل بیزین نش[ویرایش]
نمونههایی از بازیها[ویرایش]
بازی ترسوها (Chicken Game)[ویرایش]
دو نوجوان در اتومبیلهایشان با سرعت به طرف یکدیگر میرانند، بازنده کسی است که اوّل فرمان اتومبیلش را بچرخاند و از جاده منحرف شود.
بنابراین:
اگر یکی بترسد و منحرف شود دیگری میبرد؛
اگر هر دو منحرف شوند هیچکس نمیبرد اما هر دو باقی میمانند؛
اگر هیچکدام منحرف نشوند هر دو ماشینهایشان (و یا حتی احتمالاً زندگیشان را) میبازند؛
بنا بر این به احتمال زیاد یا هر دو تصادف کرده یا مساوی میشوند و احتمال برد یکی خیلی کم است.
معمای زندانی(Prisoner’s dilemma)[ویرایش]
نوشتار اصلی: معمای زندانیها
دو نفر متهم به شرکت در یک سرقت مسلحانه، در جریان یک درگیری دستگیر شدهاند و هر دو جداگانه مورد بازجویی قرار میگیرند. در طی این بازجویی با هریک از آنها جداگانه به این صورت معامله میگردد:
اگر دوستت را لو بدهی تو آزاد میشوی ولی او به پنج سال حبس محکوم خواهد شد.
اگر هر دو یکدیگر را لو بدهید، هر دو به سه سال حبس محکوم خواهید شد.
اگر هیچکدام همدیگر را لو ندهید، هر دو یکسال در یک مرکز بازپروری خدمت خواهید نمود.
در این بازی به نفع هر دو زندانی است که هر دو گزینه سوم را انتخاب کنند، ولی چون هر کدام از آنها به دنبال کسب بهترین نتیجه برای خود یعنی آزاد شدن است و به طرف مقابل نیز اعتماد ندارد دوست خود را لو میدهد و در نتیجه هر دوی زندانیها متضرر میشوند.
نظریه بازیهای تکاملی نظریه بازیهای تکاملی بر پایه «نظریه تکاملی داروین» استوار است. طبق نظریه داروین در یک اکوسیستم جمعیت گونههایی که با محیط سازگارتر هستند رشد میکند و برعکس جمعیت گونههایی که با محیط کمتر سازگار هستند رو به زوال میگذارد. البته این روند تا جایی ادامه خواهد یافت که آنقدر جمعیت گونههای سازگارتر رشد کند تا تنازع فیمابین خود آن¬ جمعیت (بر سر منابع محدود مورد نیاز آنها) باعث کاهش سازگاری آنها با محیط شود و بدین ترتیب رشد آنها متوقف شود. برای مدل کردن دینامیک در محیطهایی که استراتژیهایی به صورت کلان در میان جمعیت وجود دارد، قیاسا همین مدل استفاده میگردد. در منبع [؟] اثبات شده که دینامیک جمعیت به مطابق رابطه زیر تغییر میکند که به «معادله تکثیر» (Replicator Dynamic) مشهور است: x ̇_a (t)=x_a (t)(R_a (t)-R ̅(t)) که در آن درصدی از جمعیت که از استراتژی a استفاده میکنند را با x_a و سازگاری برگزینندگان استراتژی a را با R_a و میانگین سازگاریها در میان جمعیت با R ̅(t) ¬مشخص میشود.
کد مطلب: 466
آدرس مطلب: http://malionline.ir/fa/doc/news/466/تئوری-بازیها-آموزش-مالتی-مدیا
مالی آنلاین
http://malionline.ir